Ppt on mathematician sridharacharya
Solved Examples Using Sridharacharya Formula
Example1.\( 2x^2-2\sqrt{2}x+1=0 \)
Solution: Comparing the given equation with \(ax^2+bx+c=0 \)
a=2, b= -22, c=1.
Now apply the Sridharacharya formula
\(\Rightarrow x={-(-2\sqrt2)\pm\sqrt{(-2\sqrt2)^2-4.2.1}\over{2\times2}} = {2\sqrt2 \pm0\over4}\)
\(\Rightarrow x={2\sqrt2\pm0\over4} = {2\sqrt2\over4}, {2\sqrt2\over4}={1\over\sqrt2},{1\over\sqrt2}\)
Hence, the given equation has two equal roots: 12 and 12
\({1\over\sqrt2}, {1\over\sqrt2} \)
Example2.
\({1\over2}x^2-\sqrt{11}x+1=0\)
Solution: Multiplying the given equation by 2 to remove the fraction
\(x^2-2\sqrt{11}x+2=0\)
Now comparing this equation with\( ax^2+bx+c=0\)
a=1, b= -211, c=2.
Now apply the Sridharacharya formula
\(\Rightarrow x={-(-2\sqrt{11})\pm\sqrt{(-2\sqrt{11})^2-4.2.1}\over{2\times1}} = {2\sqrt{11}\pm\sqrt{36}\over2}\)
x= 22 04 =11+3, 11-3.
\(\Rightarrow x={2\sqrt2\pm0\over4}=\{/REGREPLACE}
श्री धराचार्य सूत्र
Quadratic equation solver
- Acharyas religion
श्री धराचार्य सूत्र | Discriminant formula |
Quadratic equation solver | Ppt on mathematician sridharacharya |